Fast Inference in Sparse Coding Algorithms with Applications to Object Recognition

نویسندگان

  • Koray Kavukcuoglu
  • Marc'Aurelio Ranzato
  • Yann LeCun
چکیده

Adaptive sparse coding methods learn a possibly overcomplete set of basis functions, such that natural image patches can be reconstructed by linearly combining a small subset of these bases. The applicability of these methods to visual object recognition tasks has been limited because of the prohibitive cost of the optimization algorithms required to compute the sparse representation. In this work we propose a simple and efficient algorithm to learn basis functions. After training, this model also provides a fast and smooth approximator to the optimal representation, achieving even better accuracy than exact sparse coding algorithms on visual object recognition tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

Fast Approximations to Structured Sparse Coding and Applications to Object Classification

We describe a method for fast approximation of sparse coding. The input space is subdivided by a binary decision tree, and we simultaneously learn a dictionary and assignment of allowed dictionary elements for each leaf of the tree. We store a lookup table with the assignments and the pseudoinverses for each node, allowing for very fast inference. In the process of describing this algorithm, we...

متن کامل

Learning Fast Approximations of Sparse Coding

In Sparse Coding (SC), input vectors are reconstructed using a sparse linear combination of basis vectors. SC has become a popular method for extracting features from data. For a given input, SC minimizes a quadratic reconstruction error with an L1 penalty term on the code. The process is often too slow for applications such as real-time pattern recognition. We proposed two versions of a very f...

متن کامل

Face Recognition in Thermal Images based on Sparse Classifier

Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...

متن کامل

Learning Feature Hierarchies for Object Recognition

In this thesis we study unsupervised learning algorithms for training feature extractors and building deep learning models. We propose sparse-modeling algorithms as the foundation for unsupervised feature extraction systems. To reduce the cost of the inference process required to obtain the optimal sparse code, we model a feed-forward function that is trained to predict this optimal sparse code...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1010.3467  شماره 

صفحات  -

تاریخ انتشار 2008